ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB и BC треугольника ABC расположены точки M и N соответственно, причём  AM : MB = 3 : 5,  BN : NC = 1 : 4.  Прямые CM и AN пересекаются в точке O. Найдите отношения  OA : ON  и  OM : OC.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 85]      



Задача 104033

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9,10

На столе лежат несколько тонких спичек одинаковой длины. Всегда ли можно раскрасить их концы  а) в 2,   б) в 3 цвета так, чтобы два конца каждой спички были разных цветов, а каждые два касающихся конца (разных спичек) – одного и того же цвета?

Прислать комментарий     Решение

Задача 30818

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Степень вершины ]
Сложность: 4+
Классы: 8,9

Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов.
Докажите, что есть четыре вершины, все рёбра между которыми – одного цвета.

Прислать комментарий     Решение

Задача 64663

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Каждому городу в некоторой стране присвоен индивидуальный номер. Имеется список, в котором для каждой пары номеров указано, соединены города с данными номерами железной дорогой или нет. Оказалось, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, но список по-прежнему будет верным. Верно ли, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, город с номером N получит номер M, но список по-прежнему будет верным?

Прислать комментарий     Решение

Задача 64727

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

Прислать комментарий     Решение

Задача 78163

Тема:   [ Теория графов (прочее) ]
Сложность: 4+
Классы: 10,11

Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .