Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 83]
|
|
Сложность: 5 Классы: 8,9,10
|
В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2k},
а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 83]