ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Квадрат раскрашен в два цвета. Можно любой прямоугольник перекрашивать в преобладающий в нем цвет. Доказать, что такими операциями можно сделать весь квадрат одноцветным.

Вниз   Решение


Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?

ВверхВниз   Решение


Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.

ВверхВниз   Решение


Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 97817

Темы:   [ Ограниченность, монотонность ]
[ Последовательности (прочее) ]
Сложность: 4
Классы: 9,10

Автор: Анджанс А.

a1, a2, a3, ...  – возрастающая последовательность натуральных чисел. Известно, что  aak = 3k  для любого k.
Найти   а)  a100;   б)  a1983.

Прислать комментарий     Решение

Задача 109784

Темы:   [ Ограниченность, монотонность ]
[ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Рациональные и иррациональные числа ]
[ Целая и дробная части. Принцип Архимеда ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Автор: Храбров А.

Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число;  an+1 = ⅕ an,  если an делится на 5;
an+1 = [ an],  если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.

Прислать комментарий     Решение

Задача 109599

Темы:   [ Ограниченность, монотонность ]
[ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Примеры и контрпримеры. Конструкции ]
[ Последовательности (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что для любого натурального числа a1 > 1 существует такая возрастающая последовательность натуральных чисел  a1, a2, a3, ...,
что      делится на  a1 + a2 + ... + ak  при всех  k ≥ 1.

Прислать комментарий     Решение

Задача 97900

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Ограниченность, монотонность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Прислать комментарий     Решение

Задача 98510

Темы:   [ Средние величины ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 8,9

В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .