ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.

Вниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью 2 - $ \sqrt{2}$ и $ \sqrt{2}$, перелить из одной в другую ровно 1 литр?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 65982

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3
Классы: 9,10,11

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству  x²y – y ≥ 0.

Прислать комментарий     Решение

Задача 97900

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Ограниченность, монотонность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Прислать комментарий     Решение

Задача 65176

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

По положительным числам х и у вычисляют  а = 1/y  и  b = y + 1/x.  После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?

Прислать комментарий     Решение

Задача 78141

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 9,10,11

Доказать, что если  |ax² – bx + c| < 1  при любом x из отрезка  [–1, 1],  то и  |(a + b)x² + c| < 1  на этом отрезке.

Прислать комментарий     Решение

Задача 78186

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Имеется два набора чисел  a1 > a2 > ... > an  и  b1 > b2 > ... > bn.  Доказать, что  a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .