|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Число a – корень уравнения х11 + х7 + х3 = 1. При каких натуральных значениях n выполняется равенство a4 + a3 = an + 1? Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки. Представьте в виде композиции дробно-линейного отображения
w = Угловая величина дуги AB равна α < 90°. На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB. У игрока в преферанс оказалось 4 козыря, а еще 4 находятся на руках у двух его противников. Какова вероятность того, что козыри лягут а) 2 : 2; б) 3 : 1; в) 4 : 0? Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 79]
Пусть p и q – различные простые числа. Сколько делителей у числа
а) 2·3·5·7·11; б) 22·33·55·77·1111 ?
Доказать: число делителей n не превосходит 2
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
Для каждого k от 1 до 6 найдите наименьшее натуральное число, которое имеет ровно k различных делителей.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 79] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|