ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78208
Темы:    [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Доказать: число делителей n не превосходит 2.


Решение

Если d – делитель числа n, то n/d – тоже делитель числа n. Хотя бы одно из этих двух чисел не превосходит . Поэтому число делителей
не превосходит 2.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 23
Год 1960
вариант
1
Класс 7
Тур 1
задача
Номер 5
книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 3
Название Мультипликативные функции
Тема Неопределено
задача
Номер 03.091

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .