ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?

Вниз   Решение


В параллелограмме ABCD диагональ АС в два раза больше стороны АВ. На стороне BC выбрана точка K так, что  ∠KDB = ∠BDA.
Найдите отношение  BK : KC.

ВверхВниз   Решение


Автор: Фольклор

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

ВверхВниз   Решение


Автор: Юран А.Ю.

Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 127]      



Задача 67492

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Юран А.Ю.

Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.
Прислать комментарий     Решение


Задача 79399

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9,10

У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует трапеция с вершинами в отмеченных точках.

Прислать комментарий     Решение

Задача 98408

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Хорды и секущие (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Прислать комментарий     Решение

Задача 98587

Темы:   [ Плоскость, разрезанная прямыми ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 10,11

Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Докажите, что точка, лежащая с A по разные стороны от всех данных прямых, существует тогда и только тогда, когда часть, содержащая A, неограничена.

Прислать комментарий     Решение

Задача 105208

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 7,8,9

Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .