|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что число неравных треугольников с вершинами в вершинах правильного n-угольника равно ближайшему к n²/12 целому числу. Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на 1/9, и седьмой – на 1/10. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным а) на 1/12; б) на ⅙? Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
При каких a и b уравнение x3 + ax + b = 0 имеет три различных решения, составляющих арифметическую прогрессию?
Докажите, что уравнение x³ + ax² – b = 0, где a и b вещественные и b > 0, имеет один и только один положительный корень.
Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство
В каком из двух уравнений сумма квадратов корней больше
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|