ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Незнайка хвастал своими выдающимися способностями умножать числа "в уме". Чтобы его проверить, Знайка предложил ему написать какое-нибудь число, перемножить его цифры и сказать результат. – "1210", – немедленно выпалил Незнайка. – "Ты неправ!" – сказал, подумав, Знайка. Как он обнаружил ошибку, не зная исходного числа?

Вниз   Решение


В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?

ВверхВниз   Решение


На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?

ВверхВниз   Решение


Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  2p² + 1  – простые.

ВверхВниз   Решение


Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

ВверхВниз   Решение


Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 61044

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9,10

При каких a и b уравнение  x3 + ax + b = 0  имеет три различных решения, составляющих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 61257

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Докажите, что уравнение  x³ + ax² – b = 0,  где a и b вещественные и  b > 0,  имеет один и только один положительный корень.

Прислать комментарий     Решение

Задача 66600

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
Прислать комментарий     Решение


Задача 61045

Темы:   [ Теорема Виета ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 10,11

Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

Прислать комментарий     Решение

Задача 61047

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .