|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи ABCD – прямоугольник, M – середина стороны BC. Известно, что прямые MA и MD взаимно перпендикулярны и что периметр прямоугольника ABCD равен 24. Найдите его стороны. Докажите, что x² + y² + z² ≥ xy + yz + zx  при любых x, y, z. На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны. У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть? Докажите, что высоты остроугольного треугольника пересекаются в одной точке. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181]
R =
Докажите, что: а) точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда R = 1 и k четно (Менелай); б) прямые AA1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда R = 1 и k нечетно (Чева).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|