Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 181]
На сторонах
BC,
CA и
AB треугольника
ABC (или
на их продолжениях) взяты точки
A1,
B1 и
C1 соответственно.
Докажите, что точки
A1,
B1 и
C1 лежат на одной прямой тогда и
только тогда, когда
.
. 
= 1 (
теорема Менелая).
а) В треугольнике
ABC проведены биссектрисы внешних углов
AA1,
BB1 и
CC1 (точки
A1,
B1 и
C1 лежат на прямых
BC,
CA и
AB).
Докажите, что точки
A1,
B1 и
C1 лежат на одной прямой.
б) В треугольнике
ABC проведены биссектрисы
AA1 и
BB1 и биссектриса
внешнего угла
CC1. Докажите, что точки
A1,
B1 и
C1 лежат на одной
прямой.
Касательные к описанной окружности неравнобедренного треугольника
ABC в точках
A,
B и
C
пересекают продолжения сторон в точках
A1,
B1 и
C1. Докажите, что
точки
A1,
B1 и
C1 лежат на одной прямой.=-1
Решите задачу
5.85, а) с помощью теоремы Менелая.
а) Серединный перпендикуляр к биссектрисе
AD
треугольника
ABC пересекает прямую
BC в точке
E. Докажите,
что
BE :
CE =
c2 :
b2.
б) Докажите, что точки пересечения серединных перпендикуляров
к биссектрисам треугольников и продолжений соответствующих сторон лежат
на одной прямой.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 181]