Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 181]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Стороны $AB$, $BC$, $CD$ и $DA$ четырехугольника $ABCD$ касаются окружности с центром $I$ в точках $K$, $L$, $M$ и $N$ соответственно. На прямой $AI$ выбрана произвольная точка $P$. Прямая $PK$ пересекает прямую $BI$ в точке $Q$. Прямая $QL$ пересекает прямую $CI$ в точке $R$. Прямая $RM$ пересекает прямую $DI$ в точке $S$. Докажите, что точки $P$, $N$ и $S$ лежат на одной прямой.
Четырёхугольник $ABCD$ вписан в окружность, $DC = m$, $DA = n$. На стороне $BA$ взяты точки $A_1$ и $K$, а на стороне $BC$ – точки $C_1$ и $M$. Известно, что $BA_1 = a$, $BC_1 = c$, $BK = BM$ и что отрезки $A_1M$ и $C_1K$ пересекаются на диагонали $BD$. Найдите $BK$ и $BM$.
[Теорема Чевы]
|
|
Сложность: 4- Классы: 8,9
|
Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC.
Докажите, что отрезки AA1, BB1, CC1 пересекаются в одной точке тогда и только тогда, когда
[Теорема Менелая]
|
|
Сложность: 4- Классы: 8,9
|
Дан треугольник ABC. Некоторая прямая пересекает его стороны
AB, BC и продолжение стороны AC в точках C1, A1, B1 соответственно. Докажите, что
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан треугольник $ABC$. На сторонах $AB$ и $BC$ взяты точки $M$ и $N$ так, что $MN\parallel AC$. Точки $M'$ и $N'$ симметричны соответственно точкам $M$ и $N$ относительно сторон $BC$ и $AB$ соответственно. Пусть $M'A$ пересекает $BC$ в точке $X$, а $N'C$ пересекает $AB$ в точке $Y$. Докажите, что точки $A$, $C$, $X$, $Y$ лежат на одной окружности.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 181]