ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).

  а) Придумайте выдающийся многоугольник из четырёх клеток.
  б) При каких  n > 4  существует выдающийся многоугольник из n клеток?

Вниз   Решение


CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.

ВверхВниз   Решение


Даны параллелограмм ABCD и некоторая точка M. Докажите, что  SACM = | SABM±SADM|.

ВверхВниз   Решение


Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.

ВверхВниз   Решение


На доске написано число 8n. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если n = 1989?

ВверхВниз   Решение


Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


ВверхВниз   Решение


(Та же задача, что и 122, только может быть введено до 100000 чисел)

Вводятся числа от 1 до 9 до тех пор,
пока не будет введен 0. Всего будет введено не более 100000 чисел

Посчитать количество единиц в этой последовательности,
количество двоек, количество троек и так далее (в выходном
файле всегда должно быть 9 чисел).


Пример входного файла
1 1 4 1 5 8 6 3 5 1 0

Пример выходного файла:
4 0 1 1 2 1 0 1 0

ВверхВниз   Решение


Докажите, что площадь выпуклого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 54010

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3-
Классы: 8,9

Докажите, что высота неравнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, меньше половины гипотенузы.

Прислать комментарий     Решение

Задача 32098

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с высотами ]
Сложность: 3
Классы: 7,8,9

В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника.

Прислать комментарий     Решение

Задача 57481

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.
Прислать комментарий     Решение


Задача 55159

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Докажите, что площадь выпуклого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Прислать комментарий     Решение


Задача 55178

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9

Существует ли треугольник, у которого две высоты больше 100, а площадь меньше 1?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .