ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На одной из сторон данного острого угла лежит точка A. Постройте на этой же стороне угла точку, равноудаленную от второй стороны угла и от точки A.

Вниз   Решение


Найти все натуральные числа p, что p,  p² + 4  и  p² + 6  – простые числа.

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

ВверхВниз   Решение


Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

ВверхВниз   Решение


В полукруг радиуса R с центром в точке O вписан квадрат ABCD так, что точки A и D лежат на диаметре, а точки B и C – на окружности. Найдите радиус окружности, вписанной в треугольник OBC .

ВверхВниз   Решение


Докажите, что биссектриса равнобедренного треугольника, проведённая из вершины, является медианой и высотой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 604]      



Задача 53320

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

Прислать комментарий     Решение

Задача 53322

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Докажите, что биссектриса равнобедренного треугольника, проведённая из вершины, является медианой и высотой.

Прислать комментарий     Решение

Задача 53325

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Треугольники ABC и ABC1 – равнобедренные с общим основанием AB. Докажите равенство треугольников ACC1 и BCC1.

Прислать комментарий     Решение

Задача 53372

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC и углом при вершине B, равным 36°, проведена биссектриса AD.
Докажите, что треугольники CDA и ADB равнобедренные.

Прислать комментарий     Решение

Задача 53398

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 2+
Классы: 8,9

Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если  BC = 12.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .