|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны? В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе? 10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток. Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]
В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками.
Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?
Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.
Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|