|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают. Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8? Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале (0, 1)? На плоскости дано N точек, никакие три из которых не лежат на одной прямой. Если A, B, C — любые три из них, то внутри треугольника ABC нет ни одной точки из данных. Доказать, что эти точки можно занумеровать так, что многоугольник A1A2...An будет выпуклым. Дано натуральное число n > 3. Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k? На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра. В треугольник вписан квадрат так, что две его вершины лежат на основании, а две другие вершины — на боковых сторонах треугольника. Доказать, что сторона квадрата меньше 2r, но больше Каждое из рёбер полного графа с 9 вершинами покрашено в синий или красный цвет. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]
За круглым столом сидят 40 человек. Может ли случиться, что у каждых двух из них, между которыми сидит чётное число человек, есть за столом общий знакомый, а у каждых двух, между которыми сидит нечётное число человек, общего знакомого нет?
За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.
В компании из 2n + 1 человека для любых n человек найдётся отличный от них человек, знакомый с каждым из них.
Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Каждое из рёбер полного графа с 9 вершинами покрашено в синий или красный цвет.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|