ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

Вниз   Решение


Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360°/n  вокруг некоторой точки.

ВверхВниз   Решение


Дан правильный 4n-угольник A1A2...A4n площади S, причём  n > 1.  Найдите площадь четырёхугольника A1AnAn +1An+2.

ВверхВниз   Решение


Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

ВверхВниз   Решение


Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Автор: Фольклор

Существует ли такое N и такие  N – 1  бесконечных арифметических прогрессий с разностями  2, 3, 4, ..., N,  что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?

ВверхВниз   Решение


Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 195]      



Задача 97780

Темы:   [ Арифметическая прогрессия ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

Прислать комментарий     Решение

Задача 97915

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Автор: Фольклор

Существует ли такое N и такие  N – 1  бесконечных арифметических прогрессий с разностями  2, 3, 4, ..., N,  что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?

Прислать комментарий     Решение

Задача 105181

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 9,10

Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.

Прислать комментарий     Решение

Задача 111644

Темы:   [ Арифметическая прогрессия ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

Прислать комментарий     Решение

Задача 115472

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 195]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .