ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?

Вниз   Решение


За круглым вращающимся столом, на котором стоят 8 белых и 7 чёрных чашек, сидят 15 гномов. Они надели 8 белых и 7 чёрных колпачков. Каждый гном берёт себе чашку, цвет которой совпадает с цветом его колпачка, и ставит напротив себя, после этого стол поворачивается случайным образом. Какое наибольшее число совпадений цвета чашки и колпачка можно гарантировать после поворота стола (гномы сами выбирают, как сесть, но не знают, как повернётся стол)?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 195]      



Задача 116001

Темы:   [ Арифметическая прогрессия ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

Прислать комментарий     Решение

Задача 116713

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом:

1, 2, 3, ..., n, –n, ..., –2, –1

По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число  2n + 1  простое.

Прислать комментарий     Решение

Задача 116963

Темы:   [ Арифметическая прогрессия ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 6,7,8

Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом?

Прислать комментарий     Решение

Задача 35213

Тема:   [ Геометрическая прогрессия ]
Сложность: 3
Классы: 9,10,11

Известно, что сумма первых n членов геометрической прогрессии, состоящей из положительных чисел, равна S, а сумма обратных величин первых n членов этой прогрессии равна R. Найдите произведение первых n членов этой прогрессии.
Прислать комментарий     Решение


Задача 31272

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 6,7,8

Доказать, что в любой бесконечной арифметической прогрессии из натуральных чисел
  a) имеется бесконечно много составных чисел.
  б) имеется или бесконечно много квадратов, или ни одного.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 195]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .