ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .

Вниз   Решение


Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

ВверхВниз   Решение


При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

ВверхВниз   Решение


Экспонентой y = ex называется такая функция, для которой выполнены условия y'(x) = y(x) и y(0) = 1. Какая последовательность {an} будет обладать аналогичными свойствами, если производную заменить на разностный оператор $ \Delta$?

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. На продолжении ребра AD за точку D выбрана точка M так, что AM = 2 . Точка E – середина ребра A1B1 , точка F – середина ребра DD1 . Какое наибольшее значение может принимать отношение , где точка P лежит на отрезке AE , а точка Q – на отрезке СF ?

ВверхВниз   Решение


Существует ли такое натуральное n, что  

ВверхВниз   Решение


В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?

ВверхВниз   Решение


Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 703]      



Задача 35466

Темы:   [ Последовательности (прочее) ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 7,8,9

Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых.
Прислать комментарий     Решение


Задача 65329

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3-
Классы: 8,9,10,11

2012 правильных игральных костей (кубиков) составили в ряд таким образом, что каждые две соседние кости прилегают друг другу одинаковыми гранями (принцип домино). В остальном положение костей случайное. Найдите сумму очков, которые оказались на поверхности получившейся фигуры.

Прислать комментарий     Решение

Задача 102857

Тема:   [ Геометрическая прогрессия ]
Сложность: 3-
Классы: 7,8

Найти сумму 1 + 2002 + 20022 + ... + 2002n.
Прислать комментарий     Решение


Задача 105203

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9

Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно?

Прислать комментарий     Решение

Задача 34929

Тема:   [ Арифметическая прогрессия ]
Сложность: 3

Натуральный ряд разбит на n арифметических прогрессий (каждое натуральное число принадлежит ровно одной из этих n прогрессий). Пусть d1, d2, ..., dn – разности этих прогрессий. Докажите, что   1/d1 + 1/d2 + ... + 1/dn = 1.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .