|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга. Целые ненулевые числа a1, a2, ..., an таковы, что равенство a) Докажите, что число n чётно. б) При каком наименьшем n такие числа существуют? Решите уравнение: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]
Пусть p и q – различные простые числа. Сколько делителей у числа
а) 2·3·5·7·11; б) 22·33·55·77·1111 ?
Доказать: число делителей n не превосходит 2
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
Для каждого k от 1 до 6 найдите наименьшее натуральное число, которое имеет ровно k различных делителей.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|