ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Вниз   Решение


Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.

ВверхВниз   Решение


Во что перейдёт угол градусной меры α вершиной в начале координат в результате преобразования  w = z³?

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.

ВверхВниз   Решение


Найдите длину кратчайшего пути по поверхности единичного куба между его противоположными вершинами.

ВверхВниз   Решение


Марсиане делят сутки на 13 часов. После того, как Марсовский Заяц уронил часы в чай, у них изменилась скорость вращения секундной стрелки, а скорость вращения других стрелок осталась прежней. Известно, что каждую полночь все три стрелки совпадают. Сколько всего за сутки может быть таких моментов времени, когда три стрелки совпадут?

ВверхВниз   Решение


Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.

ВверхВниз   Решение


Решить в простых числах уравнение  pqr = 7(p + q + r).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 108200  (#94.4.10.3)

Темы:   [ Описанные четырехугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в четырёхугольник ABCD и касается его непараллельных сторон BC и AD в точках E и F соответственно. Пусть прямая AO и отрезок EF пересекаются в точке K , прямая DO и отрезок EF – в точке N , а прямые BK и CN – в точке M . Докажите, что точки O , K , M и N лежат на одной окружности.
Прислать комментарий     Решение


Задача 109583  (#94.4.10.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Деление с остатком ]
[ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 7,8,9

Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

Прислать комментарий     Решение

Задача 60470  (#94.4.10.5)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

Прислать комментарий     Решение

Задача 109585  (#94.4.10.6)

Темы:   [ Целочисленные и целозначные многочлены ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и  P(19) = P(94) = 1994.

Прислать комментарий     Решение

Задача 108201  (#94.4.10.7)

Темы:   [ Пятиугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Принцип Дирихле (углы и длины) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 7,8,9,10

В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .