ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 79423  (#05.011)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Десятичные дроби ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

Прислать комментарий     Решение

Задача 60850  (#05.012)

Темы:   [ Двоичная система счисления ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 9,10,11

Докажите, что среди чисел [2k$ \sqrt{2}$] ( k = 0, 1,...) бесконечно много составных.

Прислать комментарий     Решение

Задача 60851  (#05.013)

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а) $ \sqrt[3]{17}$;     д) cos 10o;    
б) $ \sqrt{2}$ + $ \sqrt{3}$;     е) tg 10o;    
в) $ \sqrt{2}$ + $ \sqrt{3}$ + $ \sqrt{5}$;     ж) sin 1o;    
г) $ \sqrt[3]{3}$ - $ \sqrt{2}$; з) log23.

Прислать комментарий     Решение

Задача 60852  (#05.014)

 [Метод спуска]
Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

Прислать комментарий     Решение

Задача 60853  (#05.015)

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Докажите, что уравнение  x³ + x²y + y³ = 0  не имеет рациональных решений, кроме  (0, 0).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .