ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 60844  (#05.006)

Темы:   [ Принцип Дирихле (прочее) ]
[ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число рационально тогда и только тогда, когда оно представляется конечной или периодической десятичной дробью.

Прислать комментарий     Решение

Задача 60845  (#05.007)

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

Прислать комментарий     Решение

Задача 60846  (#05.008)

Темы:   [ Десятичные дроби (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.

Прислать комментарий     Решение

Задача 60847  (#05.009)

Темы:   [ Теория алгоритмов (прочее) ]
[ Периодические и непериодические дроби ]
[ Рациональные и иррациональные числа ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Прислать комментарий     Решение

Задача 60848  (#05.010)

Темы:   [ Десятичные дроби ]
[ Деление с остатком ]
Сложность: 3
Классы: 8,9,10

Для каких натуральных n число 1/n представляется конечной десятичной дробью?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .