|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, Ob — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и Ob лежат на окружности с центром M. б) Точка O, лежащая внутри треугольника ABC, обладает тем свойством, что прямые AO, BO и CO проходят через центры описанных окружностей треугольников BCO, ACO и ABO. Докажите, что O — центр вписанной окружности треугольника ABC. Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей. |
Страница: 1 [Всего задач: 5]
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.
В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если A соединён с B, то B соединён с A). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится.
Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|