ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Некоторые из 20 металлических кубиков, одинаковых по размерам и внешнему виду, алюминиевые, остальные (Предполагается, что все кубики могут быть алюминиевыми, но они не могут быть все дюралевыми (если все кубики окажутся одного веса, то нельзя выяснить, алюминиевые они или дюралевые) — прим. ред.) дюралевые (более тяжёлые). Как при помощи 11 взвешиваний на весах с 2-мя чашечками без гирь определить число дюралевых кубиков?

Вниз   Решение


Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.

ВверхВниз   Решение


Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$

ВверхВниз   Решение


Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67013  (#1)

Тема:   [ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность  $n - p$  также является простым числом.

Прислать комментарий     Решение

Задача 67024  (#2)

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Точки $M$ и $N$ – середины сторон $AB$ и $AC$ треугольника $ABC$. Касательная $\ell$ к описанной окружности треугольника $ABC$ в точке $A$ пересекает прямую $BC$ в точке $K$. Докажите, что описанная окружность треугольника $MKN$ касается $\ell$.
Прислать комментарий     Решение


Задача 67025  (#3)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Векторы помогают решить задачу ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8,9,10,11

Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки?
Прислать комментарий     Решение


Задача 67026  (#4)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?
Прислать комментарий     Решение


Задача 67022  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10,11

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .