ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.

Вниз   Решение


Дана возрастающая последовательность положительных чисел  $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$  бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66834  (#1)

Темы:   [ Многочлены (прочее) ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10,11

Многочлен  $P(x, y)$  таков, что для всякого целого  $n\geqslant 0$  каждый из многочленов  $P(n, y)$  и  $P(x, n)$  либо тождественно равен нулю, либо имеет степень не выше $n$.
Может ли многочлен  $P(x, x)$ иметь нечётную степень?

Прислать комментарий     Решение

Задача 66835  (#2)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.

Прислать комментарий     Решение

Задача 66829  (#3)

Темы:   [ Индукция (прочее) ]
[ Взвешивания ]
Сложность: 4
Классы: 8,9,10,11

Есть 100 внешне неразличимых монет трёх типов: золотые, серебряные и медные (каждый тип встречается хотя бы раз). Известно, что золотые весят по 3 г, серебряные – по 2 г, медные – по 1 г.
Как на чашечных весах без гирек определить тип у всех монет не более чем за 101 взвешивание?

Прислать комментарий     Решение

Задача 66837  (#4)

Темы:   [ Числовые последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 8,9,10,11

Дана возрастающая последовательность положительных чисел  $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$  бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.

Прислать комментарий     Решение

Задача 66838  (#5)

Темы:   [ Вписанные четырехугольники ]
[ Описанные четырехугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9,10,11

Точка $M$ лежит внутри выпуклого четырёхугольника $ABCD$ на одинаковом расстоянии от прямых $AB$ и $CD$ и на одинаковом расстоянии от прямых $BC$ и $AD$. Оказалось, что площадь четырёхугольника $ABCD$ равна  $MA\cdot MC + MB\cdot MD$.  Докажите, что четырёхугольник $ABCD$
  а) вписанный;
  б) описанный.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .