Версия для печати
Убрать все задачи
В числовом треугольнике
каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю).
Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Решение
Набор чисел A1, A2, ..., A100 получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
B1 = A1, B2 = A1 + A2, B3 = A1 + A2 + A3, ..., B100 = A1 + A2 + A3 + ... + A100.
Докажите, что среди остатков от деления на 100 чисел B1, B2, ..., B100 найдутся 11 различных.


Решение
Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.

Решение