ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 202]      



Задача 103892

Темы:   [ Куб ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 7,8

Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?
Прислать комментарий     Решение


Задача 109102

Темы:   [ Куб ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Докажите, что в кубе ABCDA1B1C1D1 прямые AC1 и BD перпендикулярны.
Прислать комментарий     Решение


Задача 109320

Темы:   [ Куб ]
[ Сфера, описанная около призмы ]
Сложность: 3
Классы: 10,11

Найдите ребро куба, вписанного в сферу радиуса R.
Прислать комментарий     Решение


Задача 110290

Темы:   [ Куб ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 3
Классы: 10,11

Внутри единичного куба расположены восемь равных шаров. Каждый шар вписан в один из трёхгранных углов куба и касается трёх шаров, соответствующих соседним вершинам куба. Найдите радиусы шаров.
Прислать комментарий     Решение


Задача 110314

Темы:   [ Куб ]
[ Цилиндр ]
Сложность: 3
Классы: 10,11

Найдите площадь осевого сечения цилиндра, вписанного в единичный куб так, что ось цилиндра лежит на диагонали куба, а каждое основание касается трёх граней куба в их центрах.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .