ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]      



Задача 87354

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3.
Прислать комментарий     Решение


Задача 87355

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через противоположные вершины A1 , C и середину ребра D1C1 . Найдите расстояние от вершины D1 до плоскости P , если ребро куба равно 6.
Прислать комментарий     Решение


Задача 87356

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через точку D и середины рёбер A1D1 и C1D1 . Найдите расстояние от середины ребра AA1 до плоскости P , если ребро куба равно 2.
Прислать комментарий     Решение


Задача 87408

Темы:   [ Куб ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Найдите расстояние между серединами двух скрещивающихся рёбер куба, полная поверхность которого равна 36.
Прислать комментарий     Решение


Задача 87470

Темы:   [ Куб ]
[ Свойства сечений ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – середина ребра D1C1 . Найдите периметр треугольника A1DM , а также расстояние от вершины D1 до плоскости, проходящей через вершины этого треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .