ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]      



Задача 35505

Темы:   [ Куб ]
[ Пятиугольники ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Может ли некоторое сечение куба быть правильным пятиугольником?

Прислать комментарий     Решение

Задача 86918

Темы:   [ Куб ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Основание правильной треугольной пирамиды расположено в грани куба, одна из сторон основания совпадает с ребром куба, а вершина пирамиды лежит в противоположной грани куба. Найдите угол боковой грани пирамиды с плоскостью её основания.
Прислать комментарий     Решение


Задача 86986

Темы:   [ Куб ]
[ Векторное произведение ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Точки M и K – середины рёбер AB и CD соответственно. Найдите радиус сферы, проходящей через точки M , K , A1 и C1 .
Прислать комментарий     Решение


Задача 87288

Темы:   [ Куб ]
[ Сферы (прочее) ]
Сложность: 3
Классы: 8,9

В полушар радиуса R вписан куб так, что четыре его вершины лежат на основании полушара, а другие четыре вершины расположены на его сферической поверхности. Найдите объём куба.
Прислать комментарий     Решение


Задача 87353

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра DD1 . Найдите расстояние от середины ребра CD до плоскости P , если ребро куба равно 4.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .