Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 209]
Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая эти окружности соответственно в точках C1 и C2, отличных от A.
Докажите, что отрезок C1C2 виден из точки B под одним и тем же углом для любой прямой C1C2.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан остроугольный треугольник ABC. Окружности с центрами A и C проходят через точку B, вторично пересекаются в точке F и пересекают описанную окружность ω треугольника ABC в точках D и E. Отрезок BF пересекает окружность ω в точке O. Докажите, что O – центр описанной окружности треугольника DEF.
|
|
|
Сложность: 3+ Классы: 9,10
|
СН – высота остроугольного треугольника АВС, О – центр его описанной окружности. Точка Т – проекция вершины С на прямую АО.
В каком отношении прямая ТН делит сторону ВС?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
а) $N$ = 19;
б) $N$ = 20?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 209]