ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 209]      



Задача 52588

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Из концов дуги AB, содержащей mo, проведены хорды AC и BD, так, что угол DMC, образованный их пересечением, равен углу DNC, вписанному в дугу CD. Найдите градусную меру этой дуги.

Прислать комментарий     Решение


Задача 101901

Темы:   [ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC биссектрисы углов при вершинах A и C пересекаются в точке D. Найдите радиус описанной около треугольника ABC окружности, если радиус окружности с центром в точке O, описанной около треугольника ADC, равен R = 6, и $ \angle$ACO = 30o.
Прислать комментарий     Решение


Задача 101902

Темы:   [ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

В окружность с центром в точке O вписан треугольник EGF, у которого угол $ \angle$EFG -- тупой. Вне окружности находится такая точка L, что $ \angle$LEF = $ \angle$FEG, $ \angle$LGF = $ \angle$FGE. Найдите радиус описанной около треугольника ELG окружности, если площадь треугольника EGO равна 81$ \sqrt{3}$ и $ \angle$OEG = 60o.
Прислать комментарий     Решение


Задача 79381

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10

На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.
Прислать комментарий     Решение


Задача 52997

Темы:   [ Теорема синусов ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 20, AC = 24. Известно также, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой лежит на стороне AC. Найдите радиус описанной около треугольника ABC окружности.

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .