Страница: 1
2 3 >> [Всего задач: 15]
|
|
Сложность: 3 Классы: 9,10,11
|
Существует ли вписанный в окружность $19$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов?
|
|
Сложность: 3 Классы: 10,11
|
В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.
|
|
Сложность: 3+ Классы: 8,9,10
|
Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что любая натуральная степень многочлена P(x) = x4 + x³ – 3x² + x + 2 имеет хотя бы один отрицательный коэффициент.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
а) $N$ = 19;
б) $N$ = 20?
Страница: 1
2 3 >> [Всего задач: 15]