ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 131]      



Задача 64986

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Центральная симметрия (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3+
Классы: 10,11

Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.

Прислать комментарий     Решение

Задача 98463

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

Прислать комментарий     Решение

Задача 53957

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Угол при вершине A треугольника ABC равен 120o. Окружность касается стороны BC и продолжений сторон AB и AC. Докажите, что расстояние от вершины A до центра окружности равно периметру треугольника ABC.

Прислать комментарий     Решение


Задача 55447

Темы:   [ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Пусть O1, O2 и O3 — центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Докажите, что точки A, B и C — основания высот треугольника O1O2O3.

Прислать комментарий     Решение


Задача 52675

Темы:   [ Вневписанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В прямоугольный треугольник ABC с углом A, равным 30o, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 131]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .