ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 134]      



Задача 77910

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9

В выпуклом 13-угольнике проведены все диагонали. Они разбивают его на многоугольники. Возьмём среди них многоугольник с наибольшим числом сторон. Какое самое большее число сторон может он иметь?
Прислать комментарий     Решение


Задача 98540

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)

Прислать комментарий     Решение

Задача 73581

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Выпуклые многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 7,8,9

Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
Прислать комментарий     Решение


Задача 57751

Темы:   [ Теорема о группировке масс ]
[ Выпуклые многоугольники ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10

Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.
Прислать комментарий     Решение


Задача 78240

Темы:   [ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник A0B0C0. Пусть точки A1, B1, C1 — центры квадратов, построенных на сторонах B0C0, C0A0, A0B0. С треугольником A1B1C1 делаем то же самое. Получаем треугольник A2B2C2 и т.д. Доказать, что $ \Delta$An + 1Bn + 1Cn + 1 пересекает $ \Delta$AnBnCn ровно в 6 точках.
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 134]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .