ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 131]      



Задача 115733

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Выпуклые многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 9,10

При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?

Прислать комментарий     Решение

Задача 55195

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 7,8,9

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

Прислать комментарий     Решение


Задача 58089

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 7,8,9,10

Какое наименьшее число точек достаточно отметить внутри выпуклого n-угольника, чтобы внутри любого треугольника с вершинами в вершинах n-угольника содержалась хотя бы одна отмеченная точка?
Прислать комментарий     Решение


Задача 64676

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
[ Средние величины ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4
Классы: 10,11

Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику.

Прислать комментарий     Решение

Задача 78202

Темы:   [ Комплексные числа в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 10,11

Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.
Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 131]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .