ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 134]      



Задача 35575

Темы:   [ Теорема о промежуточном значении. Связность ]
[ Выпуклые многоугольники ]
[ Поворот помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.
Прислать комментарий     Решение


Задача 57687

Темы:   [ Векторы сторон многоугольников ]
[ Выпуклые многоугольники ]
Сложность: 5
Классы: 8,9,10

Дано n попарно не сонаправленных векторов (n$ \ge$3), сумма которых равна нулю. Докажите, что существует выпуклый n-угольник, набор векторов сторон которого совпадает с данным набором векторов.
Прислать комментарий     Решение


Задача 58090

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые многоугольники ]
Сложность: 5
Классы: 8,9,10

Внутри выпуклого 2n-угольника взята точка P. Через каждую вершину и точку P проведена прямая. Докажите, что найдется сторона 2n-угольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.
Прислать комментарий     Решение


Задача 73555

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Итерации ]
Сложность: 5
Классы: 7,8,9,10

Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
Прислать комментарий     Решение


Задача 78217

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 134]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .