ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 162]      



Задача 66409

Темы:   [ Трапеции (прочее) ]
[ Подобные треугольники (прочее) ]
[ Гомотетия и поворотная гомотетия (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Mudgal A.

Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.
Прислать комментарий     Решение


Задача 116483

Темы:   [ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 7,8,9

В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.

Прислать комментарий     Решение

Задача 116743

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

В трапеции ABCD стороны AD и BC параллельны, и  AB = BC = BD.  Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.

Прислать комментарий     Решение

Задача 53509

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD известно, что  AB = a,  BC = b  (a ≠ b).  Определите, что пересекает биссектриса угла A: основание BC или боковую сторону CD?

Прислать комментарий     Решение

Задача 53739

Темы:   [ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Каждая из боковых сторон AB и CD трапеции ABCD разделена на пять равных частей. Пусть M и N – вторые точки деления на боковых сторонах, считая от вершин B и C соответственно. Найдите MN, если основания  AD = a  и  BC = b.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 162]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .