Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 162]
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали трапеции
ABCD перпендикулярны. Точка M – середина боковой стороны AB,
точка N симметрична центру описанной окружности треугольника ABD
относительно прямой AD. Докажите, что ∠CMN = 90°.
|
|
Сложность: 3 Классы: 7,8,9
|
В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.
В трапеции ABCD известно, что AB = a, BC = b (a ≠ b). Определите, что пересекает биссектриса угла A: основание BC или боковую сторону CD?
Каждая из боковых сторон AB и CD трапеции ABCD разделена на пять равных частей. Пусть M и N – вторые точки деления на боковых сторонах, считая от вершин B и C соответственно. Найдите MN, если основания AD = a и BC = b.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 162]