ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 116]      



Задача 65595

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 7,8,9

Напомним, что игра в "морской бой" начинается с того, что на доске размером 10×10 клеток расставляют один "корабль" из четырёх клеток, два – из трёх клеток, три – из двух, и четыре одноклеточных (такие, как на рисунке). По правилам "корабли" не должны касаться, даже углами. До какого наименьшего размера можно уменьшить квадратное поле для игры, сохранив это правило?

Прислать комментарий     Решение

Задача 65604

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 5,6,7,8

Сложите из трёх одинаковых клетчатых фигур без оси симметрии фигуру с осью симметрии.

Прислать комментарий     Решение

Задача 88042

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3+
Классы: 5,6,7,8

Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.

Прислать комментарий     Решение

Задача 98232

Темы:   [ Замощения костями домино и плитками ]
[ Правило произведения ]
Сложность: 3+
Классы: 8,9,10

На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

Прислать комментарий     Решение

Задача 98448

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 116]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .