ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 286]      



Задача 52355

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9,10

На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что  AP = BP + CP.

Прислать комментарий     Решение

Задача 52356

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

Прислать комментарий     Решение

Задача 53114

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма квадратов расстояний от точки, лежащей на окружности, до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.

Прислать комментарий     Решение

Задача 53689

Темы:   [ Правильный (равносторонний) треугольник ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Два равносторонних треугольника ABC и CDE расположены по одну сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.

Прислать комментарий     Решение

Задача 53868

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 286]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .