ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 286]      



Задача 54222

Темы:   [ Правильный (равносторонний) треугольник ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Вершины M и N равностороннего треугольника BMN лежат соответственно на сторонах AD и CD квадрата ABCD со стороной, равной a . Найдите MN .
Прислать комментарий     Решение


Задача 54716

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Точка M лежит на стороне AC равностороннего треугольника ABC со стороной 3a, причём  AM : MC = 1 : 2.  Точки K и L, расположенные на сторонах соответственно AB и BC являются вершинами другого равностороннего треугольника MKL. Найдите его стороны.

Прислать комментарий     Решение

Задача 56501

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.

Прислать комментарий     Решение

Задача 56857

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Из точки M, лежащей внутри правильного треугольника ABC, опущены перпендикуляры MP, MQ и MR на стороны AB, BC и CA соответственно. Докажите, что  AP2 + BQ2 + CR2 = PB2 + QC2 + RA2 и  AP + BQ + CR = PB + QC + RA.
Прислать комментарий     Решение


Задача 56858

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 286]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .