ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Написать модифицированный вариант алгоритма Евклида, использующий соотношения НОД(a,b) = НОД(a mod b, b) при a≥b, НОД(a,b) = НОД(a, b mod a) при b≥a.

Вниз   Решение


Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?

ВверхВниз   Решение


На плоскости нарисован острый угол с вершиной в точке O и точка P внутри него. Постройте точки A и B на сторонах угла так, чтобы треугольник PAB имел наименьший возможный периметр.

ВверхВниз   Решение


Разрежьте «печенье» на 16 равных частей (т. е. одинаковых по размеру и по форме). Разрезы не обязательно прямолинейные.

ВверхВниз   Решение


Треугольники ABC и A1B1C1 подобны и по-разному ориентированы. На отрезке AA1 взята такая точка A', что  AA' : A1A' = BC : B1C1.  Аналогично строим B' и C'. Докажите, что A', B' и C' лежат на одной прямой.

ВверхВниз   Решение


Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число  1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 [Всего задач: 78]      



Задача 66240

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 9,10

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Прислать комментарий     Решение

Задача 65046

Темы:   [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Теорема о группировке масс ]
[ Две касательные, проведенные из одной точки ]
[ Ромбы. Признаки и свойства ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины диагоналей AC и BD.
Докажите, что четырёхугольник ABCD – вписанный тогда и только тогда, когда  IM : AC = IN : BD.

Прислать комментарий     Решение

Задача 109841

Темы:   [ Биссектриса делит дугу пополам ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Средняя линия треугольника ]
[ Вспомогательные равные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 9,10,11

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .