ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 199]      



Задача 97861

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Найти все решения системы уравнений:   (x + y)³ = z,  (y + z)³ = x,  (z + x)³ = y.

Прислать комментарий     Решение

Задача 102828

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Замена переменных ]
Сложность: 3
Классы: 7,8

Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Прислать комментарий     Решение

Задача 107626

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

На базаре продаются рыбки, большие и маленькие. Сегодня три больших и одна маленькая стоят вместе столько же, сколько пять больших вчера. А две большие и одна маленькая сегодня стоят вместе столько же, сколько три больших и одна маленькая вчера. Можно ли по этим данным выяснить, что дороже: одна большая и две маленьких сегодня, или пять маленьких вчера?

Прислать комментарий     Решение

Задача 109027

Тема:   [ Симметрические системы. Инволютивные преобразования ]
Сложность: 3
Классы: 8,9,10

Найти все действительные решения системы уравнений
    x² + y² + z² = 1,
    x³ + y³ + z³ = 1.

Прислать комментарий     Решение

Задача 61344

Темы:   [ Системы линейных уравнений ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 9,10,11

Решите системы уравнений. Для каждой из них выясните, при каких значениях параметров система не имеет решений, а при каких имеет бесконечно много решений.

а)

б)

в)

г)

д)

е)

ж)

з)

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .