ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]      



Задача 61281

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Тригонометрические замены ]
Сложность: 3
Классы: 9,10,11

Решите систему
    x² + y² = 1,
    4xy(2y² – 1) = 1.

Прислать комментарий     Решение

Задача 65422

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 3
Классы: 9,10,11

Решите систему уравнений:
  1/x = y + z,
  1/y = z + x,
  1/z = x + y.

Прислать комментарий     Решение

Задача 65656

Тема:   [ Системы линейных уравнений ]
Сложность: 3
Классы: 7,8,9

Решите уравнение   1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².

Прислать комментарий     Решение

Задача 65917

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 10,11

Имеет ли отрицательные корни уравнение   x4 – 4x³ – 6x² – 3x + 9 = 0?

Прислать комментарий     Решение

Задача 66360

Темы:   [ Уравнения высших степеней (прочее) ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3
Классы: 9,10,11

Число p – корень кубического уравнения  x³ + x – 3 = 0.
Придумайте кубическое уравнение с целыми коэффициентами, корнем которого будет число p².

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .