ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181]      



Задача 65071

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

Прислать комментарий     Решение

Задача 77880

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Показать, что  271958 – 108878 + 101528  делится на 26460.

Прислать комментарий     Решение

Задача 98137

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9

Докажите, что произведение всех целых чисел от  21917 + 1  до  21991 – 1  включительно не есть квадрат целого числа.

Прислать комментарий     Решение

Задача 109872

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

Прислать комментарий     Решение

Задача 110139

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .