ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

Вниз   Решение


Внутри треугольника ABC взята точка O. Пусть da, db, dc – расстояния от нее до прямых BC, CA, AB.
При каком положении точки O произведение dadbdc будет наибольшим?

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

ВверхВниз   Решение


Из точки M описанной окружности треугольника ABC опущены перпендикуляры MP и MQ на прямые AB и AC. При каком положении точки M длина отрезка PQ максимальна?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 188]      



Задача 60438

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Сколько существует целых чисел от 1 до 16500, которые
  а) не делятся на 5;
  б) не делятся ни на 5, ни на 3;
  в) не делятся ни на 5, ни на 3, ни на 11?

Прислать комментарий     Решение

Задача 64424

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9,10,11

Перемножили несколько натуральных чисел и получили 224, причём самое маленькое число было ровно вдвое меньше самого большого.
Сколько чисел перемножили?

Прислать комментарий     Решение

Задача 64481

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 9,10,11

При каких натуральных n число  n² – 1  является степенью простого числа?

Прислать комментарий     Решение

Задача 65132

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7

Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост?

Прислать комментарий     Решение

Задача 65624

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 5,6,7

Есть четыре карточки с цифрами: 2, 0, 1, 6. Для каждого из чисел от 1 до 9 можно из этих карточек составить четырёхзначное число, которое кратно выбранному однозначному. А в каком году такое будет в следующий раз?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .