Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 81]
Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an,
принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть x и y – натуральные числа. Рассмотрим функцию
f(x, y) = ½ (x + y – 1)(x + y – 2) + y. Докажите, что множеством значений этой функции являются все натуральные числа, причём для любого натурального i = f(x, y) числа x и y определяются однозначно.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
У квадратного уравнения x² + px + q = 0
коэффициенты p и q увеличили на единицу. Эту операцию повторили
четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти
полученных уравнений корни были бы целыми числами.
|
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такой квадратный трёхчлен f(x) = ax² + bx + c с целыми коэффициентами и a, не кратным 2014, что все числа f(1), f(2), ..., f(2014) имеют различные остатки при делении на 2014?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 81]