ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 81]      



Задача 76485

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10

Доказать, что многочлен с целыми коэффициентами  a0xn + a1xn–1 + ... + an–1x + an,  принимающий при  x = 0  и  x = 1  нечётные значения, не имеет целых корней.

Прислать комментарий     Решение

Задача 60482

Темы:   [ Простые числа и их свойства ]
[ Целочисленные и целозначные многочлены ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10

Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?

Прислать комментарий     Решение

Задача 79536

Темы:   [ Уравнения в целых числах ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3+
Классы: 8,9,10

Пусть x и y – натуральные числа. Рассмотрим функцию  f(x, y) = ½ (x + y – 1)(x + y – 2) + y.  Докажите, что множеством значений этой функции являются все натуральные числа, причём для любого натурального  i = f(x, y)  числа x и y определяются однозначно.

Прислать комментарий     Решение

Задача 105169

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

У квадратного уравнения  x² + px + q = 0  коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.

Прислать комментарий     Решение

Задача 64728

Темы:   [ Квадратный трехчлен (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Существует ли такой квадратный трёхчлен  f(x) = ax² + bx + c  с целыми коэффициентами и a, не кратным 2014, что все числа  f(1),  f(2), ...,  f(2014) имеют различные остатки при делении на 2014?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 81]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .