Страница: 1
2 3 >> [Всего задач: 11]
|
|
Сложность: 3+ Классы: 10,11
|
Последовательность (an) такова, что an = n² при 1 ≤ n ≤ 5 и при всех натуральных n выполнено равенство an+5 + an+1 = an+4 + an. Найдите a2015.
|
|
Сложность: 3+ Классы: 9,10,11
|
При разложении чисел A и B в бесконечные десятичные дроби длины
минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть
равна длина минимального периода числа A + B?
|
|
Сложность: 3+ Классы: 7,8,9
|
Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции:
по любым числам
x и
y он вычисляет
x +
y,
x −
y и
(при
x ≠ 0). Петя утверждает, что он может возвести любое положительное число в квадрат с помощью своего микрокалькулятора, сделав не более 6 операций. А вы можете это сделать? Если да, то попробуйте перемножить любые два положительных числа, сделав не более 20 операций (промежуточные результаты можно записывать, неоднократно используя их в вычислениях).
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такой квадратный трёхчлен f(x) = ax² + bx + c с целыми коэффициентами и a, не кратным 2014, что все числа f(1), f(2), ..., f(2014) имеют различные остатки при делении на 2014?
|
|
Сложность: 4- Классы: 10,11
|
Найдите все такие a и b, что и при всех x выполнено неравенство |a sin x + b sin 2x| ≤ 1.
Страница: 1
2 3 >> [Всего задач: 11]