Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 81]
|
|
|
Сложность: 4- Классы: 9,10,11
|
Коэффициенты a, b, c квадратного трёхчлена f(x) =
ax² + bx + c – натуральные числа, сумма которых равна 2000. Паша может изменить любой коэффициент на 1, заплатив 1 рубль. Докажите, что он может получить квадратный трёхчлен, имеющий хотя бы один целый корень, заплатив не более 1050 рублей.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Верно ли, что для любых трёх различных натуральных чисел a, b и c найдётся квадратный трёхчлен с целыми коэффициентами и положительным старшим коэффициентом, принимающий в некоторых целых точках значения a³, b³ и c³?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что P – Q, P и P + Q – квадраты некоторых многочленов (причём Q не получается умножением P на число)?
|
|
|
Сложность: 4- Классы: 9,10
|
Перемножаются все выражения вида
(при всевозможных комбинациях знаков).
Докажите, что результат а) целое число, б) квадрат целого числа.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Уравнение xn + a1xn–1 + ... + an–1x + an = 0 с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 81]