ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Найдите площадь сечения, проведённого через высоту и одно из ребёр правильного тетраэдра, если ребро тетраэдра равно a .

Вниз   Решение


K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах.

Напишите программу, помогающую членам Жюри построить требуемые K-1 разрезов.

Входные данные

В первой строке входного файла содержатся два целых числа K и N (1 ≤ K, N ≤ 50). Далее следуют N пар вещественных чисел – координаты
последовательно расположенных вершин N-угольника.

Выходные данные

Каждый из K-1 разрезов в выходном файле должен быть представлен четверкой чисел – координатами своих концов. Все числа должны быть разделены пробелами и/или символами перевода строки.

Пример входного файла

4 3
2 1
0 0.5
4 0.5

Пример выходного файла

2 1 1 0.5
2 1 2 0.5
2 1 3 0.5

ВверхВниз   Решение


Предложенный выше алгоритм перемножения многочленов требует порядка n2 действий для перемножения двух многочленов степени n. Придумать более эффективный (для больших n) алгоритм, которому достаточно порядка nlog 4/log 3 действий.

ВверхВниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 67036

Темы:   [ Задачи на движение ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 8,9,10,11

В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
Прислать комментарий     Решение


Задача 116615

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Решите уравнение:  .

Прислать комментарий     Решение

Задача 78054

Темы:   [ Уравнения высших степеней (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 8,9,10,11

Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

Прислать комментарий     Решение

Задача 78520

Темы:   [ Системы показательных уравнений и неравенств ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 9,10,11

Решить в положительных числах систему:

$\displaystyle \left\{\vphantom{
\begin{array}{rcl}
x^y&=&z,\\
y^z&=&x,\\
z^x&=&y.
\end{array}
}\right.$$\displaystyle \begin{array}{rcl}
x^y&=&z,\\
y^z&=&x,\\
z^x&=&y.
\end{array}$

Прислать комментарий     Решение

Задача 111771

Темы:   [ Алгебраические неравенства (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 9,10,11

Для вещественных  x > y > 0  и натуральных  n > k  докажите неравенство  (xk – yk)n < (xn – yn)k.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .