|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите площадь сечения, проведённого через высоту и одно из ребёр правильного тетраэдра, если ребро тетраэдра равно a . K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах. Напишите программу, помогающую членам Жюри построить требуемые
K-1 разрезов.
Предложенный выше алгоритм перемножения многочленов требует порядка n2 действий для перемножения двух многочленов степени n. Придумать более эффективный (для больших n) алгоритм, которому достаточно порядка nlog 4/log 3 действий. Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
Решите уравнение:
Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0.
Для вещественных x > y > 0 и натуральных n > k докажите неравенство (xk – yk)n < (xn – yn)k.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|